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1 Introduction

Ideal point estimation is a well-established methodological problem in the social sciences

that maps the preferences of actors as geometric positions in a latent space. Since the

seminal work of Poole and Rosenthal (1997), social scientists have widely applied ideal

point estimation methods to measure the ideology of political actors including US legisla-

tors (Poole and Rosenthal, 1997; Clinton et al., 2004), Supreme Court justices (Bailey and

Chang, 2001; Martin and Quinn, 2002), US state legislators (Shor and McCarty, 2011), US

voters (Bafumi and Herron, 2010), the European Parliament members (Hix et al., 2006),

and members of the UN General Assembly (Voeten, 2000).1 These substantive applications

are allowed by methodological advancements such as Bayesian estimation (Clinton et al.,

2004) and dynamic modeling (Martin and Quinn, 2002) to name a few. Recent develop-

ments further include major progress in the model (e.g. Goplerud, 2019; Moser et al., 2021;

Binding and Stoetzer, 2022) and estimation strategy (e.g. Carroll et al., 2013; Imai et al.,

2016; Peress, 2020).

Despite significant developments in ideal point estimation methods in the social sciences,

existing ideal point estimation methods lack a principled method to identify multidimen-

sional ideal points. The source of the problem is rotational invariance, which indicates a

case where the rotational transformation of ideal point estimates preserves the log-likelihood

of the model. Attempts to estimate multidimensional ideal points, including the two most

well-known methods Nominal Three-Step Estimation (NOMINATE; Poole and Rosenthal,

1997) and Bayesian IRT (BIRT; Clinton et al., 2004), had to utilize a priori constraints.

Specifically, similar to factor analysis, NOMINATE sets the principal axis of maximum

variance as the first dimension and finds the second dimension that best accounts for the

remaining variance. In other words, each dimension should account for different variations,

and thus the estimated dimensions cannot be ‘correlated’. BIRT also induces a priori con-

straints such as anchoring multidimensional positions of a few actors based on researchers’

substantive knowledge. For example, Clinton et al. (2004) note “In d-dimensional choice

spaces, d(d+1) linearly independent a priori restrictions on the ideal points X are required

1Recently, ideal point estimation methods have been extended to a rich set of non-voting data including
text (Slapin and Proksch, 2008; Gerrish and Blei, 2011; Vafa et al., 2020), survey responses (Tausanovitch
and Warshaw, 2013), campaign contributions (Bonica, 2014), Twitter data (Barberá, 2015), and Facebook
data (Bond and Messing, 2015).
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for identification” (Clinton et al., 2004, 357). A similar solution is applied in Peress and

Spirling (2010), where the authors study movie critics using BIRT approach.

The use of a priori constraints, however, poses a major challenge in applied research.

Bateman and Lapinski (2016) note that the “confusing and residual nature of what the

second dimension of NOMINATE actually captures” poses a challenge in its interpretation

(Bateman and Lapinski, 2016, 152). This is because, Benoit and Laver (2012) note, latent

policy dimensions are often correlated in the sense that legislators’ positions on one di-

mension can be predicted from their positions on some other dimension. Yet NOMINATE

restricts such correlated dimensions of policy space as aforementioned. Anchoring of a fixed

number of ideal points in BIRT also depends on the researchers’ substantive knowledge of

the policy space and is prone to controversies and misspecification.

In this paper, we propose a model-based solution to the problem of identifying multi-

dimensional ideal points. To begin with, we show that the use of ℓ2 distance in existing

ideal point estimation models obstructs the identification of multidimensional ideal points

since the ℓ2 distance between two vectors is invariant under the rotation of the vectors.

The use of ℓ1 distance, in contrast, transforms the infinite rotational invariance into the

signed perpendicular rotational invariance in which the configuration of the ideal points

becomes a highly tractable problem. In this regard, we propose the Bayesian ℓ1(or Man-

hattan distance)-based ideal point model (BMIM). The estimation of BMIM is done by a

multivariate slice sampling method.2 We show that BMIM produces posterior estimates

that contract around a small area.

We are not the first to address the problem of rotational invariance in ideal point es-

timation. For example, Sohn (2017) introduces a model that samples parameters from

the Matrix von Mises-Fisher (MvMF) distribution to address rotational invariance. The

MvMF distribution has been used in factor analysis (Hoff, 2007, 2009), where it allows for

dimension-specific estimates to align along maximum variance directions without redun-

dancy. Our proposed method differs from this approach in that it allows for correlated

dimensions of the ideal points, which may ease the interpretation of the latent policy space

in social science applications.

We demonstrate that our proposed method effectively recovers various configurations of

multidimensional ideal points including non-partisan, two-party, and multi-party systems

2The software that implements the proposed method is available as an R package.
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in our simulation study. Then, we apply our method to the roll call data analysis of the

US House of Representatives during the late Gilded Age (1891-1899), an era of the “battle

of the standards”. Our method successfully finds that the sectional division – Southern

Democrats and the Populists from the West vs. Northeastern representatives – arose as a

major cleavage, along with partisan division, in this period, which confirms the existing

historical narratives on the debate over gold-standard.

The rest of the article is structured as follows. In Section 2, we illustrate three motivat-

ing examples that show the limitation of existing approaches. In Section 3, we introduce

BMIM. We show that the use of ℓ1 distance transforms the invariance problem of infinite

rotational turns into the signed perpendicular problem and the posterior distribution of

BMIM is concentrated around the “true” ideal points as N (the number of actors) and M

(the number of votes) increase. In Section 4, we conduct simulation studies with synthetic

data to check whether the proposed method recovers true multidimensional ideal points in

a variety of settings. In Section 5, we analyze voting data from the US House of Represen-

tatives during the late Gilded Age. Finally, we conclude with remarks and discussion in

Section 6.

2 Motivating Examples

This section examines three examples that demonstrate the challenges in estimating mul-

tidimensional ideal points using conventional ideal point estimation methods.

Example 1: Small Chamber with Two Uncorrelated Dimensions

Suppose we study ideal points in the context of a small legislature with only four legislators

(A1, A2, B1, and B2) who cast votes on 400 roll calls. Despite being unrealistic, this

example is helpful for understanding the practical challenge posed by the identification

problem of multidimensional ideal point estimation. We assume there are two political

cleavages in this policy space along the alphabet dimension (A vs. B) and the number

dimension (1 vs. 2), respectively. The two cleavages are equally important and hence half

of the roll call votes (RC #1 to # 200) are divided along the alphabet dimension and the

other half (RC #201 to # 400) is divided along the number dimension. Table 1 displays

the roll call votes in a matrix format in which a row indicates a legislator and a column
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indicates a roll call.

Table 1: Roll Call Voting Data of Small Chamber with Two Uncorrelated Dimensions: 0 denotes
nay vote and 1 denotes Yea vote.

RC #1 . . . #100 #101 . . . #200 #201 . . . #300 #301 . . . #400

A1 0 . . . 0 1 . . . 1 0 . . . 0 1 . . . 1

A2 0 . . . 0 1 . . . 1 1 . . . 1 0 . . . 0

B1 1 . . . 1 0 . . . 0 0 . . . 0 1 . . . 1

B2 1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0

Figure 1 (a) shows an ideal result of ideal point estimation, where the alignments

of legislators’ ideal points are well identified along the number dimension (A1/B1 and

A2/B2) and the alphabet dimension (A1/A2 and B1/B2). Note that a perpendicular

rotation of the results would not change substantive findings. In this case, since legislators’

alphabet cannot be predicted from their number, we can say that the two dimensions are

uncorrelated.

Now we apply conventional ideal point estimation methods, and compare the results

with the ideal case of (a). Figure 1 (b) and (c) show the result of NOMINATE and

BIRT respectively, using the same roll call voting data from Table 1.3 In the results of

(b) WNOMINATE, the first coordinates of A1 (yellow circle) and B2 (brown triangle)

are similar. This is problematic since A1 should be absolutely discordant with B2 since

they are always voting differently. In the results of (c) BIRT, any rotation of those four

ideal points would yield the same log-likelihood, meaning that we cannot determine the

dimension unless we impose some ad hoc constraints. Thus, both methods fail to capture

the underlying dimensions, the alphabet, and the number dimension.

Example 2: Two Voting Clusters with Correlated Dimensions

Next, we consider a more realistic case with a larger number of legislators and two corre-

lated policy dimensions. Suppose legislators’ voting behavior arises from a two-dimensional

policy space that consists of economic and social dimensions. In Figure 2 (a), each point

corresponds to an ideal point of a legislator who votes on a set of roll calls based on their

3We implemented wnominate() in the R package wnominate (Poole et al., 2011) for the results in (b)
and ideal() in the R package pscl (Jackman, 2020) for those in (c).
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Figure 1: Estimated Ideal Points for Small Chamber with Two Uncorrelated Dimensions: Each
panel shows the results of different multidimensional ideal points estimation. Each point indicates
the ideal points of legislators: A1 (orange circle), A2 (brown circle), B1 (orange triangle), and B2
(brown triangle). (a) The example of ideal results where each dimension shows the cleavage by
number and alphabet. (b) The results of WNOMINATE. The estimated weight of each dimension
is 1 and 0.6 respectively. Note that WNOMINATE methods impose a restriction that each ideal
point should lie within the unit circle (gray circle) for identification. (c) The results of BIRT
without anchoring legislators.
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Figure 2: Two Voting Clusters with Correlated Dimensions: Red circles indicate the ideal points
of synthetic legislators from a cluster A who are conservative on both economic (x-axis) and
social dimensions (y-axis), whereas green triangles indicate those from cluster B liberal on both
dimensions. (a) Ground truth where economic and social dimensions are the main cleavages.
(b) WNOMINATE where economic and social dimensions are lumped. (c) BIRT with partial
misspecification departing from the ground truth.

preferences. Here, an important thing to note is that the ideological positions on each co-

ordinate are correlated. That is, legislators’ alignment on economic and social dimensions

constructs two correlated yet distinct cleavages that explain their voting behavior in this

latent policy space.

In this example, we randomly generated synthetic roll-call votes based on the “true”
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ideal points in (a), and fit WNOMINATE and BIRT of which results are shown in (b) and

(c) respectively. In (b), where we plot the estimated WNOMINATE scores of synthetic

legislators, we can observe that the underlying multiple dimensions of policy space (eco-

nomic and social dimensions) have been lumped into a single dimension (socio-economic

dimension), hence losing important information about the essence of main cleavages. Fur-

thermore, it poses a “loss in translation” of the second dimension, which accounts for the

remaining variance (Bensel, 2016).

In (c), where we fixed 3 legislators after fitting BIRT for the identification, we assumed

a partially misspecified case — among three legislators that have been used as anchors,

one (red cross) has been misspecified whereas the other two (black crosses) are correctly

specified. The result shows that BIRT also fails to recover the underlying policy space and

the ideal points due to the misspecification of a single legislator. This shows that the results

of BIRT are sensitive to the specification of anchors, thus posing a challenge in justifying

the researcher’s decision of anchors.

Example 3: The US House of Representatives During the Late

Gilded Age

In real-world politics, the partisan division of legislators alone often cannot fully capture

the underlying cleavages in latent policy space, motivating the use of multidimensional ideal

point estimation. Researchers may miss a set of essential voting behaviors that jointly shape

legislative politics if they only focus on a principal axis that lumps correlated yet sufficiently

distinct issues in a single dimension. The politics in the US House of Representatives during

the late Gilded Age, which expands from 1891 to 1899, is such an example.

During the late Gilded Age, the congressional and electoral politics in the US was

centered around the battle of the standards”: the adoption of a silver standard versus

adherence to the gold standard (Bensel, 2000; Frieden, 2016). The Panic of 1893 and the

rise of the Populists, two interrelated political economic turbulence, set the fire over the

gold standard.

On one side, there were proponents for the free coinage of silver (the “Silverites”) at

a 16-1 rate against gold, implying a devaluation of the dollar that would buffer the sharp

decline of farm prices and enhance the competitiveness of the products in world markets;
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mostly supported by export-oriented farmers/miners from the South and the West. On

the other side, there were proponents of the gold standard (the “Goldbugs”) who believed

that the gold standard could secure the stability of the currency. The goldbugs were

concentrated in the international financial community and big cities in the Northeast. The

partisan divide was not mirrored in the monetary standard debate. The division in the

monetary standard was about a sectional division based on their financial interests. In

the 1896 presidential election, William Jennings Bryan, the joint Democratic-Populists

candidate who was against the gold standard, lost the support of the gold Democrats,

whereas William Mckinley, the Republican candidate who was against the silver standard,

lost the support of silver Republicans (Frieden, 2016, 118).
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DW−NOMINATE of the 53rd US H.R. (1893−1895)

Figure 3: DW-NOMINATE Scores of the 53rd US House of Representatives (1893-1896). Each
point denotes a two-dimensional ideal point of representative, measured by DW-NOMINATE
method. The color indicates the party label of the representative: blue points indicate Democrats,
red points Republican, green points Populists, and gray points Silver party. The shape indicates
the state which each representative represents: circles indicate Northeastern states, triangles
Southern states, and rectangles Western states.

Figure 3 shows DW-NOMINATE scores of the 53rd US House of Representatives (1893-

1896) (Lewis et al., 2022). Shapes indicate geographical classifications of districts and

colors indicate partisanship.4 Here, only the partisan division is captured along the first

4Following Bensel (2000)’s classification, Southern states include all those that seceded into the Con-
federacy plus Kentucky, Missouri, Oklahoma, and West Virginia; Western states include all states west of
Illinois and Wisconsin not included in the South; the Northeastern states include all the remaining states.
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dimension, denoted as “Economic/Redistributive” dimension. Yet, the sectional division

on the gold standard, the most important political debate during this period, is missing

from this result.

Although the second dimension distinguishes the two major parties from the Populists

(top), two observations hamper the interpretation of the second dimension as a sectional

division over the monetary issue. First of all, Southern Democrats (blue triangles), who

were in an anti-gold alliance with the Populists, are widely dispersed along the second

dimension. Moreover, the only representative from the Silver party (gray square), Fran-

cis Griffith Newlands, is located as moderate on the second dimension, which makes the

interpretation of the second dimension more confusing.

To sum up, three examples demonstrate the challenge of capturing interpretive di-

mensions of a latent policy space using existing multidimensional ideal point estimation

methods, despite its indispensable necessity in social science studies. In the following, we

show that the root cause of the problem is the use of ℓ2 distance-based models.

3 Ideal Points Estimation in the ℓ1-norm Space

3.1 Setup

Suppose we want to analyze the roll call votes of N legislators, i = 1, 2, . . . , N , for M roll

calls, j = 1, 2, . . . ,M . A standard multidimensional ideal point estimation can be motivated

by the following spatial voting model based on random utility. Assume that each legislator

i votes Yea on roll call vote j if the utility of voting Yea (Uijy) is greater than that of voting

Nay (Uijn). Here, the Yea utility consists of a deterministic (uijy) part and a stochastic

part (ϵijy), where the deterministic part is defined by the distance between the ideal point

of the legislator (xi) and that of the roll call (oyj) in the s−dimensional latent policy space,

and similarly for the Nay utility (xi,oyj,onj ∈ Rs). That is, uijy := f(d(xi,oyj)) where

f(·) is the utility function and d(·) is the distance measure. We assume a Gaussian random

utility as follows:

Uijy = uijy + ϵijy,

Uijn = uijn + ϵijn

9



Table 2: Utility Specification in WNOMINATE, BIRT, and BMIM (the Proposed Model)

Method Deterministic part (uijy) Utility function (f) Distance (d)

BMIM
∑s

k=1−
∣∣xik − oyjk

∣∣ linear utility ℓ1 distance

WNOMINATE β exp
{
−1

2

∑s
k=1w

2
k

(
xik − oyjk

)2}
Gaussian utility ℓ2 distance

BIRT
∑s

k=1−
(
xik − oyjk

)2
quadratic utility ℓ2 distance

where ϵijy − ϵijn ∼ N (0, 1). Let yij = 1 if legislator i vote Yea on roll call j, and yij = 0

otherwise. It follows that

Pr(yij = 1) = Pr(Uijy > Uijn)

= Pr(uijy − uijn > ϵijn − ϵijy) = Φ(uijy − uijn)

where Φ(·) is the cumulative distribution function of the standard normal distribution.

Poole and Rosenthal (1997)’s NOMINATE and Clinton et al. (2004)’s BIRT are the two

most well-known statistical models for multidimensional ideal point estimation.5 WNOMI-

NATE and BIRT both can be explained as arising from the Euclidean spatial voting model

using different random utility function f : WNOMINATE uses the Gaussian utility which

has a fatter tail compared to BIRT’s quadratic utility. This implies that as the Yea position

and Nay position move sufficiently far from the legislator’s ideal point, the difference of

utilities between voting Yea and Nay decreases in WNOMINATE whereas it increases in

BIRT (Carroll et al., 2009, 2013).

Our proposed model departs from existing methods in its way to model the latent

distance d in voting space. Table 2 shows how each method (WNOMINATE, BIRT, and

BMIM) is different in its way to model the deterministic part. The main difference between

BMIM and the other methods is in how we model the latent distance between the legislator’s

ideal points and roll call positions. See Appendix E for more discussion on the choice of

utility function. In the next section, we propose our method and then show that the use

of ℓ2 norm leads to the rotational invariance problem whereas ℓ1 norm does not.

5In this paper, we focus on WNOMINATE (weighted NOMINATE) among several variants of NOMI-
NATE methods. The result in this paper can be easily generalized to DW-NOMINATE, a dynamic version
of the method. See Section 5.3.2 of Armstrong et al. (2020) for more details about different types of
NOMINATE methods.
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3.2 ℓ1 Distance and Rotation Invariance

We first specify the linear utility function (f) of a spatial voting model using ℓ1 distance

measure (d):

Uijy =
s∑

k=1

−
∣∣xik − oyjk

∣∣
︸ ︷︷ ︸

uijy

+ϵijy, ϵijy ∼ N (0, 1) (3.1)

Uijn =
s∑

k=1

−
∣∣xik − onjk

∣∣
︸ ︷︷ ︸

uijn

+ϵijn, ϵijn ∼ N (0, 1). (3.2)

A voting model is followed from the above specification:

Pr(yij = 1) = Pr(Uijy > Uijn) (3.3)

= Pr(
s∑

k=1

−
{∣∣xik − oyjk

∣∣− ∣∣xik − onjk
∣∣} > ϵijn − ϵijy) (3.4)

= Φ(
s∑

k=1

−
{∣∣xik − oyjk

∣∣− ∣∣xik − onjk
∣∣}). (3.5)

Recall that the non-stochastic utility of voting Yea is a function of the distance between

the ideal point of the legislator and that of the roll call: uijy = f(d(xi,onj)). Thus the

log-likelihood of the spatial voting model can be expressed as a function of uijy and uijn. If

there exist multiple sets of ideal points {xi,onj,oyj} of which log-likelihood is exactly the

same, we cannot identify the ideological configuration under this model. Existing literature

lists three invariance conditions of log-likelihood (Sohn, 2017):

1. Rotation invariance exists if f(d(xi,onj)) = f(d(Axi, Aonj)) for some 2 × 2 matrix

A.6

2. Addition invariance exists if f(d(xi,onj)) = f(d(xi + c,onj + c)) for some vector

c ∈ R2.

3. Scaling invariance exists if f(d(xi,onj)) = f(d(cxi, conj)) for a scalar c ∈ R.
6From here, we assume the number of latent dimension to be 2 (s = 2) when we discuss applications.

When we discuss a model, we denote the number of latent dimension as s for generality.
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It is well known that addition and scaling invariances can be easily resolved by normal-

izing the ideal point estimates or by an informative prior (Bafumi et al., 2005). In contrast,

rotational invariance has no easy fix. For example, researchers of BIRT impose the so-called

Kennedy-Helms restriction that puts Kennedy at −1 and Helms at +1. WNOMINATE

sets the principal axis of maximum variance as the first dimension and finds the second

dimension that best accounts for the remaining variance, similar to factor analysis.

Figure 4 illustrates how we tackle the rotation invariance problem using ℓ1 distance. As

illustrated in Figure 4 (a), if we use ℓ2 distance for d(·), any arbitrary rotation of legislator

(x1; red circle) and nay position (on1; blue square) would preserve the distance between

those two points, i.e. d(x1,on1) = d(Ax1, Aon1), for any rotation matrix A or an orthogonal

matrix with determinant 1 equivalently. Thus, an infinite number of sets of two such rotated

points (a red circle and blue square connected with a line) would yield the same value of

u11n, implying that |{A}| = ∞. In contrast, if we use ℓ1 distance for d(·), only the signed

perpendicular rotations of two points as in (b) would yield the same distance, and hence

|{A}| = 8. In short, the total number of likelihood-preserving rotations and reflections is

reduced from ∞ to 8 as we model d(·), instead of ℓ2 as in BIRT and WNOMINATE, with

ℓ1 distance.

Figure 5 further illustrates how we tackle the rotation invariance problem by ℓ1 distance

and Bayesian framework, using Example 1 from Section 2 in which four legislators (A1, A2,

B1, and B2) are divided by the alphabet and the number divisions. The three panels in

Figure 5 show that the identification of multidimensional ideal points is crucially dependent

upon the choice of ℓp. In this specific case with four legislators, what determines the

configuration of ideal points are tangent points of a contour of the probability density

function of the bivariate normal distribution (our prior) with a sphere of ℓp norm. Intuitively

speaking, this is because the direction of maximizing the bivariate normal prior centered

at the origin is opposite of the direction of maximizing likelihood function. We further

illustrate each of these two components below.

The blue circled contour lines in each panel of Figure 5 indicate that the probability

of ideal points under a bivariate normal prior has its maximum (the darkest point) at the

mean. Thus, in the absence of strong information from data, the prior pulls ideal points

toward the prior mean. Imagine a circle on which a point would have a probability of ϵ,

an arbitrarily small and strictly positive real number, under the standard bivariate normal

12
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Figure 4: Illustration of Rotation Invariance Problem. Red circles indicate possible positions
of the legislator (x1), and blue squares indicate those of nay position (on1). That is, each pair
of a red circle and blue square connected with a black line (which tracks ℓ2 distance in (a) and
ℓ1 distance in (b)) yields the same likelihood of the model. (a) The total number of likelihood-
preserving rotations/reflections is ∞ for ℓ2 based model (e.g. WNOMINATE and BIRT). (b) It
is reduced to 8 for the ℓ1 based model (the proposed model).

distribution: {x ∈ R2 : ϕ2(x) = ϵ}. Under the bivariate normal prior, the ideal points of

two opposing legislators, A1 and B2 (A2 and B1), fall within this circle.

Next, recall that A1 and B2 (A2 and B1) always vote differently as defined in Table 1.

Accordingly, each model in Figure 5 attempts to locate the ideal point of A1 (B1) farthest

from that of B2 (A2) in order to maximize the likelihood, where the definition of “farthest”

depends on the choice of ℓp. To illustrate this, imagine a sphere of ℓp norm tangent to

the aforementioned circle outward: {x ∈ R2 :
∥∥x − 0

∥∥
p
= c} where 0 = (0, 0) and c

is a scalar. Any pair of tangent points pointing in opposite directions would have the

greatest distance between them within the circle. To put it differently, the tangent points

represent the geometric locations where two ideal points can be placed based on both the

prior information and the observed voting pattern, with A1 (A2) opposing B2 (B1) being

the most desirable configuration.

Three panels of Figure 5 illustrate how these tangent points vary by the choice of ℓp in

the case of four legislators: (a) p = 1 , (2) p = 2, and (c) p =∞, respectively. In panel (a),

the sphere of ℓ1 norm (red diamond) is tangent to the prior (blue) contours at the midpoints

of each side. In this way, the proposed method successfully recovers “configurations” of
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four legislators’ ideal points.7
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(c) p = ∞

Figure 5: Illustration of Cleavages Captured by Different Choices of Distance Measure with
Example 1 (Section 2). Each panel shows the tangent points of a sphere of ℓp norm and a
contour of pdf of the bivariate normal distribution with different choices of p. In each panel, blue
contours indicate the contours of the pdf of a bivariate normal distribution, of which the mean
is (0, 0) and the covariance matrix is an identity matrix. Red lines indicate a sphere of ℓp norm:
{x ∈ R2 :

∥∥x− 0
∥∥
p
= 4.8} with different choice of p. Purple circles indicate tangent points of the

outer contour and the sphere. (a) A choice of p = 1 (i.e. ℓ1 distance), as in the proposed model
(BMIM). This panel also shows the estimation results of BMIM using the toy example (Example
1). Each point indicates the ideal points of legislators: A1 (orange circle), A2 (brown circle), B1
(orange triangle), and B2 (brown triangle). The sphere (red lines) is in a diamond shape and
there exist four tangent points (purple circles) between the sphere and the blue contour. (b) A
choice of p = 2 (i.e. ℓ2 distance), as in NOMINATE and BIRT. The sphere (red lines) is in a
circle shape and there exist infinite tangent points (purple circles) between the sphere and blue
contour since these two overlap. (c) A choice of p =∞ (i.e. ℓ∞ distance). The sphere (red lines)
is in a square shape and there exist four tangent points (purple circles) between the sphere and
the blue contour.

If we use ℓ2 distance (panel (b)), the sphere takes a shape of a circle that overlays

over the blue contours. There is an infinite number of pairs of tangent points that are in

opposite directions and have the same distance on the circle. There is no principled way

to choose one configuration in the absence of a priori constraints.

The sphere of ℓ∞ distance takes a shape of a square, as shown in (c). Tangent points

to the blue contours are located at the midpoints of each side (purple dots). Although

the four positions of legislators are identifiable (to the perpendicular rotation) in this case,

the recovered dimensions (or cleavages) are significantly distorted from the ground truth

concerning the underlying cleavages. To be specific, in panel (c), suppose that the ideal

7We use the term “configurations” here because four legislators’ ideal points in panel (a) are invariant
to the signed permutation.
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points of A1 and B2 are located at the midpoints of the first dimension (top and bottom

dots). Then, by construction, the remaining two opposing legislators’ (A2 and B1) ideal

points are located at the midpoints of the second dimension (leftmost and rightmost dots).

This configuration tells us that (1) A1 and B2 (A2 and B1) have identical ideal points in

the first (second) dimension and (2) A2 and B1 (A1 and B2) have the most extreme ideal

points in the second (first) dimension. None of these inferential results is consistent with

the underlying cleavages.

Thus, it is clear in this example that the use of an ℓ1 distance-based likelihood function

and a normal prior allows us to avoid the rotational invariance problem by reducing the

likelihood-preserving rotational turns from infinity possible cases to perpendicular turns

while preserving a desired configuration of the underlying cleavages. We focused on the

case with four legislators to illustrate the intuition behind it, but the reduction of the

likelihood-preserving rotational turns holds in general. In the following, we formally state

the theoretical justifications for our BMIM.

3.3 Model

We assume xi, oyj, and onj, i = 1, 2, . . . , N, j = 1, 2, . . . ,M , are jointly sampled from the

multidimensional standard normal distribution under the constraint
∑

i xi = 0s, where 0s

is the s−dimensional vector with all 0 elements. To speak more precisely,

θ ∼ 1

ϕs(0s)

N∏
i=1

ϕs

(
xi

) M∏
j=1

ϕs

(
oyj

) M∏
j=1

ϕs

(
onj

)
· δ
(∑

i

xi

)
, (3.6)

where θ = (x1,x2, . . . ,xN ,oy1,oy2, . . . ,oyM ,on1,on2, . . . ,onM) is an (N +2M)s× 1 vector,

ϕs

(
z
)
= (2π)−s/2 exp

(
− ∥z∥22/(2)

)
for z ∈ Rs and δ is a s−dimensional dirac measure

centered at 0. Hereinafter, we write θ as {xi,oyj,onj

}
if necessary.

We then have Pr
(
θ
∣∣Y), the posterior distribution of θ givenY =

{
yij, i = 1, 2, . . . , N, j =
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1, 2, . . . ,M
}
, is proportional to

N∏
i=1

M∏
j=1

{
Φ(uijy − uijn)

yij
(
1− Φ(uijy − uijn)

)1−yij

}

×
{ N∏

i=1

ϕs(xi)
M∏
j=1

ϕs(oyj)
M∏
j=1

ϕs(onj)

}
,

=
N∏
i=1

M∏
j=1

p
yij
ij (1− pij)

1−yij

{ N∏
i=1

ϕs(xi)
M∏
j=1

ϕs(oyj)
M∏
j=1

ϕs(onj)

}
, (3.7)

where pij = Pr(Yij = 1) = Φ(uijy − uijn).

3.4 Model Identifiability and Posterior Contraction Property

In this subsection, we provide two theoretical justifications for our BMIM. First, we show

that the log-likelihood function in Equation (3.9) below and also the posterior distribu-

tion (3.7) are identifiable up to the signed permutation of the s−dimensional ideal point

space. Second, we prove the posterior distributions of ideal point estimation models are

concentrated around the “true” ideal points as N and M increase.

Let us start with the definition of the signed permutation transformation of the ideo-

logical space with dimension s, under which the log-likelihood function is invariant. Let z

be a point in the s−dimensional ideological space, for example, z could be either xi, oyj,

or onj. We consider the location shift and signed permutation transformation of z that is

z→ z′ = P(zi +∆), (3.8)

where P is a signed permutation matrix and ∆ ∈ Rs. Here, a matrix P = (pkl, k, l =

1, 2, . . . , s) is a signed permutation matrix if and only if pkl’s are 0 or ±1 and
∑s

k=1 |pkl| =∑s
l=1 |pkl| = 1 for every k, l = 1, 2, . . . , s. The total number of s−dimensional signed per-

mutation matrices is finite as 2s ·s!. For s = 2, there are 22 ·2! = 8 different matrices, which

are [1, 0; 0, 1], [−1, 0; 0.1], [1, 0; 0,−1], [−1, 0; 0,−1], [0, 1; 1, 0], [0,−1; 1, 0], [0, 1;−1, 0], and

[0,−1;−1, 0].
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The log-likelihood function of
(
{xi}, {oyj}, {onj}

)
and β is

ℓ
((
{xi}, {oyj}, {onj}

)
, β
)
=

N∑
i=1

M∑
j=1

{
yij log

(
Φ(dij)

1− Φ(dij)

)
− log(1− Φ(dij))

}
+ C (3.9)

where C is a constant and dij = Φ−1(pij) = uijy − uijn = β∥xi − oyj∥1 − β∥xi − onj∥1.

Following Peress and Spirling (2010), we call the log-likelihood function is identi-

fiable in
(
{xi}, {oyj}, {onj}

)
if and only if, for every realizations of

{
yij
}
, there does

not exist
(
{xi}, {oyj}, {onj}

)
and

(
{x′

i}, {o′
yj}, {o′

nj}
)
such that

(
{xi}, {oyj}, {onj}

)
̸=(

{x′
i}, {o′

yj}, {o′
nj}
)
but

ℓ
((
{xi}, {oyj}, {onj}

)
, β) = ℓ

((
{x′

i}, {o′
yj}, {o′

nj}
)
, β′) (3.10)

for some β′.

We have the following results on the identifiability of the log-likelihood function in

Equation (3.9).

Theorem 1. The log-likelihood function as a function of
(
{xi}, {oyj}, {onj}

)
is identifiable

up to the class of variables formed by the location-shift and signed permutation transforma-

tion of the ideological space.

Theorem 1 relieves the identifiability problem of a general ideal point model with actor-

specific ideal points and bill parameters by introducing the ℓ1-norm for the ideological

space. The invariance of (3.9) (only up) to the signed permutation transforms is induced

from the isometry property of the ℓ1-normed space (only up) to the signed permutation

transformation. In geometry, suppose we consider an unit ball in the s−dimensional ℓ1-

normed space, it has 2s extremal points and the ‘only’ transformation to preserve the

distance from zero to these extremal points is the signed permutation transformation.

On the other hand, the identifiability on the location shift transformation is obtained by

imposing a constraint to the average of all ideal scores equals to the zero vector.

Note that Theorem 1 also provides the identifiability of Yea/Nay positions, using which

researchers can test theories of lawmaking (see Peress, 2013 for a relevant discussion).

We provide further discussion on the spatial voting theory and the intuition behind the

identification of such roll call positions in Appendix F and Appendix G.
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Next, we show the contraction of the posterior distribution of θ =
(
{xi}, {oyj}, {onj}

)
to their true values. For this, we prepare two normed spaces of two sets of parame-

ters. First, we consider the parameter space of Y, an (NM)-dimensional space of p =(
p11, . . . , p1M , p21, . . . , p2M , . . . , pN1, . . . , pNM

)⊤
, which is equipped with the vector ℓ2-norm,

∥p∥2 =
∑

ij p
2
ij. Second, we consider a weighted matrix ℓ1,2-norm for the (N + 2M) × s-

dimensional space of the ideological scores θ in (3.6) that is

∥∥θ∥∥2
m
:= M

(∑
i

∥xi∥21

)
+N

(∑
i

∥oyj∥21

)
+N

(∑
i

∥onj∥21

)
. (3.11)

In (3.11),
∑

i ∥xi∥21,
∑

i ∥oyj∥21, and
∑

i ∥onj∥21 are the matrix ℓ1,2−norm of
x1

x2

...

xN

 ,


oy1

oy2

...

oyM

 , and


on1

on2

...

onM

 .

The newly defined norm
∥∥θ∥∥

m
is the convex combination of

∑
i ∥xi∥21,

∑
i ∥oyj∥21, and∑

i ∥onj∥21, and thus it is well defined. We show that the ideological space of θ with the

weighted matrix ℓ1,2-norm is compatible with the (NN)−dimensional parameter space of

p with the vector ℓ2-norm.

Now, we state the contraction property of the posterior distribution.

Theorem 2. Suppose p∗ = {p∗ij, i = 1, 2, . . . , N, j = 1, 2, . . . ,M} satisfies

max
ij

1

p∗ij(1− p∗ij)
≤ u′. (3.12)

Then, for δN,M = (N + 2M)1+ν with any ν > 0, we have

lim
N,M→∞

Pr
(
θ ∈ B(θ∗, δN.M)

∣∣∣Y) = 0, almost surely in PY, (3.13)

where B(θ∗, δN,M) := B(θ∗, δN.M)c,

B(θ∗, δN,M) :=
{
θ ∈ Rq

∣∣ min
P∈P

∥∥P(θ)− θ∗∥∥
m
< δN,M

}
,
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for P is the set of all 2s · s! signed permutation matrices and P(θ) :=
(
Px⊤,Po⊤

y ,Po
⊤
n

)⊤
.

Theorem 2 proves that, under the assumption of a proper choice of the perpendicular

rotation P (let P = Is without loss of generality), the posterior estimates of BMIM based

on ℓ1-norm distance almost surely contract on a small error around the “true” parameter

θ, whose weighted matrix ℓ1,2 norm in the ‘prior’ distribution is concentrated around its

mean with a high probability as

∥∥θ∥∥
m
∈ NM

{
µ1,2 ±O

(
1√

max(N,M)

)}
(3.14)

with µ1,2 = 1
NM

{
E
∥∥x1

∥∥2
1
+ E

∥∥oy1

∥∥2
1
+ E

∥∥on1

∥∥2
1

}1/2

. In contrast, ℓ1,2 norm of θ in the

‘posterior’ distribution is concentrated in the ball having the center at the true value θ∗

and the radius (N + 2M)1+ν . The radius (N + 2M)1+ν is much smaller than the radius

NM
/√

max(N,M) and thus we have the posterior contraction to the true value θ∗.

The proof of Theorem 2 could be done with two lemmas, Lemma 1 and Lemma 2 in

Appendix A. The first lemma shows the compatibility between two norms, the weighted

matrix ℓ1,2-norm of θ and ℓ2-norm of p and this makes the contraction of the posterior

probability of θ in the weighted matrix ℓ1,2-norm is equivalent to that of the posterior

probability of p in the ℓ2-norm. The normed space of p with the ℓ2-norm is the parameter

space of Y and we obtain the posterior contraction of p around the true value p∗ by

following regular steps. The detailed proofs of Theorem 1 and 2 are provided in Appendix A

and Appendix B.

3.5 Estimation

We can write the joint posterior distribution of the proposed model as follows:

p(·|data) ∝
N∏
i=1

M∏
j=1

{
Φ(uijy − uijn)

yij × (1− Φ(uijy − uijn))
1−yij

}
(3.15)

×
N∏
i=1

p(xi)×
M∏
j=1

{p(oyj)× p(onj)} . (3.16)

Theorem 1 tells the likelihood is invariant to the location-shift and perpendicular rotation

transformations. We often resolve the invariance of the location-shift transformation and
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its difficulty by imposing a set of s linear constraints to θ = (x⊤,o⊤
y ,o

⊤
n )

⊤. Here, we

choose
∑

i xi = 0s following among many sets of constraints. Note that the likelihood’s

invariance to the signed permutation transformation does not affect the relative configura-

tion or substantive interpretation of the ideal points. This can be addressed with a simple

post-processing step described in Appendix J.

Since the full conditional distributions of ideal point parameters do not belong to any

standard distributions, we use the multivariate slice sampler (MSS) proposed by Neal (2003)

for the estimation of ideal point parameters. Slice sampling is a generic method that can

be easily implemented in case where the sampling distributions do not have a standard

form. It has been used in the implementation of a variant of the NOMINATE method

Carroll et al. (2013), where Gibbs sampling is not applicable as in BIRT. MSS is a straight-

forward generalization of a single-variable slice sampler that updates multiple variables

at the same iteration. We choose MSS using hyper-rectangle to update multidimensional

parameters simultaneously so that the sampler produces an ergodic chain despite the tight

dependencies of parameters across dimensions. Specifically, in our estimation using MSS,

a multidimensional ideal point of a single legislator (xi1, . . . , xis) is sampled together for

each i, and similarly for Yea (ojy1, . . . , ojys) and Nay position (ojn1, . . . , ojns).

A generic description of MSS we use is as follows. For simplicity of notation, let λ =

(λ1, · · · , λs) denote a parameter to be updated. At the t-th iteration, the method replaces

the current state, λ(t), with a new state, λ(t+1), following the three-steps (Neal, 2003, 721):

1. Draw l from U(0, f(λ(t))), thereby defining a horizontal “slice”: S = {λ : l < f(λ)}.

2. Find a hyper-rectangle H = (L1, R1)× · · · × (Ls, Rs) around λ(t) that contains all, or

much, of the slice.

3. Draw the new point, λ(t+1) ∈ A = {λ : λ ∈ S ∩ H and Pr(Select H | λ) =

Pr(Select H | λ(t))}.

For example, to sample a 2-dimensional parameter from the full conditional distribution, a

horizontal slice of the density is drawn uniformly in the first step. Then, we find a rectangle

that contains all of the slice we made. Lastly, we draw the new parameter by picking

uniformly from the rectangle until a point inside the slice is found. The MSS algorithm for

BMIM estimation is described in Algorithm 1. We choose the tuning parameter c to be 4

throughout the simulation study and real data analysis (see Appendix I for more details).
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Algorithm 1: t-th Iteration of MSS for BMIM Estimation

input : f(λ) = the full conditional distribution of λ
λ(t) = the current point
c = estimate of the typical size of a slice

output: λ(t+1) = the new point
initialization: l← f(λ(t))− rexp(1)

For i = 1, · · · , s:
Li ← λ

(t)
i − c× runif(0, 1)

Ri ← Li + c
1 repeat
2 for i = 1, · · · , s do

3 λ
(t+1)
i ← Li + runif(0, 1)× (Ri − Li)

4 if l < f(λ(t+1)) then
5 exit loop
6 for i = 1, · · · , s do

7 if λ
(t+1)
i < λ

(t)
i then

8 Li ← λ
(t+1)
i

9 else

10 Ri ← λ
(t+1)
i

In case of 2-dimensional latent space, the sampling algorithm of the proposed method

using the MSS can be summarized as follows:

1. Sample yea position of j-th bill (oyj) from f(oyj | {oyj′}j′ ̸=j, {onj}, {xi}) for j ∈

{1, . . . ,M} using MSS.

2. Sample nay position of j-th bill (onj) from f(onj | {onj′}j′ ̸=j, {oyj}, {xi}) for j ∈

{1, . . . ,M} using MSS.

3. Sample ideal point of i-th legislator (xi) from f(xi | {xi′}i′ ̸=i, {oyj}, {onj}) for i ∈

{1, . . . , N} using MSS.

4 Simulation Study

We consider three simulation settings, each of which represents three distinct cases of

multidimensional politics. The first case is a non-partisan system where legislators’ ideal

points are randomly distributed across the latent space, independent of legislators’ party

affiliations. The second case is a two-party system where legislators’ multidimensional ideal
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points are different in both dimensions along the party line. The last case is a multi-party

system in which ideal points are concentrated in four different-sized clusters. Simulated

examples of three cases are visualized in the first column of Figure 6.

For simulation, we assume a two-dimensional latent space with normally distributed

ideal points and uniformly distributed Yea/Nay positions.

1. Draw ideal points xg[i] from N (µg[i],Σg[i]), where g[i] ∈ {1, 2, · · · ,#g} denotes a

cluster to which the legislator i belongs and Σg[i] =

σ2
g[i] 0

0 σ2
g[i]

.

2. Draw each-dimensional coordinates of Yea and Nay positions oyjk,onjk from U(−1, 1).

3. Compute Pr(yij = 1) for each (i, j) with randomly sampled ϵijy− ϵijn from N (0, 0.5).

4. Sample γij from U(0, 1). If γij < Pr(yij = 1) set yij = 1, otherwise set yij = 0.

In words, we first generate synthetic ideal points and Yea/Nay positions. Next, we compute

each legislator’s probability of voting Yea for each roll call vote. Then, we generate syn-

thetic roll call votes data using the synthetic ideal points, Yea/Nay positions, and voting

probabilities. We set N = 100 with M = 1000. All samples are obtained from 4 chains of

50, 000 MCMC iterations with 20, 000 burn-in trials. Every 10th draw is stored for analysis.

See Appendix H for a summary of computational cost and convergence diagnostics.

The results of the simulation are visualized in Figure 6. Note that the results shown

in the figure are after adjusting the signed permutation of the estimated ideal points for

ease of comparison. Three different cases, (a) the non-partisan system, (b) the two-party

system, and (c) the multi-party system, are presented row-wise. The first column shows

the ground truth and the second column shows the posterior means of multidimensional

ideal point estimates from BMIM. The third and fourth columns compare the posterior

means of BMIM with true ideal points for each coordinate.

The results clearly demonstrate that BMIM successfully recovers multidimensional ideal

points across three different settings. The correlations between posterior means and the

true ideal points in the third and fourth columns indicate that the rank order of posterior

estimates for each coordinate closely matches that of the true ideal points. Specifically, the

second row, the case of a two-party system, shows that the proposed method successfully

recovers dimension-specific estimates of correlated coordinates, which is not feasible when
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(c) Multi−party

Figure 6: Simulation Studies with Synthetic Data: Clusters are identified by different col-
ors and shapes. Each row indicates different cluster structures and the first column shows the
ground truth. The second to fourth columns compare BMIM estimates with the ground truth.
Specifically, the second column shows estimated ideal points, and the third and fourth columns
dimension-wise comparison results. The first row (a) shows the case of the non-partisan system
where synthetic legislators are dispersed across the space. The second row (b) shows the case of a
two-party system where two parties oppose each other across the dimensions. The third row (c)
shows the case of the multi-party system with two opposing main parties and two minor parties.

ℓ2 distance is used in the likelihood. The third row also shows that the proposed method

successfully recovers a complex cleavage structure with multiple voting clusters. Two small

clusters in the off-diagonal direction (purple crosses and blue squares) are not lumped to-

gether with two larger clusters (red circles and green triangles) even though we do not

impose any a priori identifying constraint. Comparison with BIRT and WNOMINATE is

available in Appendix K. Additionally, we conduct further simulation studies of misspec-
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ified cases where the roll call data is generated based on the Gaussian/quadratic utility

model and the non-uniformly distributed Yea/Nay positions. The results are available in

Appendix L and Appendix M.

5 Applications

In this section, we analyze roll call data of the 53rd US House of Representatives during the

late Gilded Age. As discussed in Section 2, the congressional and electoral politics during

this period were largely shaped by the battle over the gold standard. The division over gold

aligned with a sectional division rather than a partisan division, forming a multidimensional

policy space among representatives. We use the roll call votes of the 53rd US House of

Representatives collected by voteview (Lewis et al., 2022). The roll call data consists of

372 representatives with 336 roll calls. All samples are obtained from 100, 000 MCMC

iterations with 50, 000 burn-in and thinning every 10th draw.

Figure 7 compares BMIM estimates (a) with those of DW-NOMINATE (b). We denote

legislators’ states by shape and voting clusters by color. The results of our method reveal

two notable patterns that are missing in that of DW-NOMINATE. First, one of the major

cleavages during this time, the battle of the standards, is captured in the second dimension

by our method. In panel (a), Southern Democrats (orange triangles) and the Populists from

the West (green rectangles) formed an anti-gold alliance with the Silver representative (gray

rectangle) which is located at the top of the figure. This is in contrast with the results of

DW-NOMINATE shown in panel (b) where Southern Democrats and the Populists are not

clustered on either side of the second dimension. Additional analysis focusing on two core

Silver bills: Sherman Act Repeal (H.R.1) and Free Silver Override (H.R.4956) (Frieden,

2016, p.129), is presented in Appendix O.

Second, the first dimension of the panel (a) follows the partisan division, indicating

that the partisan division is still a significant cleavage among the representatives. Panel

(b) shows that the politics of the 53rd Congress was mainly about partisan division, with

no clear pattern in the second dimension.

To further examine the trajectory of the battle of standards, we extended the time

frame to four Congresses from 1891 to 1899 and conducted BMIM analysis. The results

presented in Figure 8 clearly indicate that the sectional division on the monetary standard
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Figure 7: Multidimensional Ideal Point Estimation of the 53rd US House of Representatives
(1893-1896). Each point denotes a two-dimensional ideal point of representative, measured by (a)
BMIM, and (b) DW-NOMINATE method respectively. The color indicates the party label of the
representative: blue points indicate Democrats, red points Republicans, green points Populists,
and gray points the Silver party. The shape indicates the state which each representative rep-
resents: circles indicate Northeastern states, triangles Southern states, and rectangles Western
states. For ease of visualization, we used orange triangles to denote Southern Democrats.

was eventually integrated with the partisan divide. This change in the battle of standards

occurred before and after the presidential election of 1896, in which Republican William

McKinley defeated Democratic-Populist William Jennings Bryan. The second sectional

cleavage of the House, distinct from the first partisan cleavage, was shaped by the battle of

standards during the 52nd and 53rd Congresses, as shown in panels (a) and (b) of Figure 8.

However, the gold standard issue was absorbed by the first partisan dimension in panel

(c), which separated Goldbug Republicans on the right from the majority of southern

Democrats, Populists, and some Western Republicans on the left. In Appendix O and

Appendix P, we further illustrate a historical background of the transition and provide

additional analysis fitting the entire time frame.

Estimates of BIRT are largely consistent with estimates of WNOMINATE, both of

which are available in Appendix O. Ideal points are split mainly by the partisan division
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(the first dimension), but the second dimension does not capture the sectional division

on monetary issue. Southern Democrats and populists are dispersed over the far-left re-

gion without forming a distinct group in the estimates of WNOMINATE and BIRT. For

this reason, we conclude that the proposed method has a comparative advantage in rep-

resenting the multidimensional politics during this period over two existing methods of

multidimensional ideal point estimation.

6 Discussion

In this article, we propose a novel method for the multidimensional ideal point estimation

using the ℓ1 distance and Bayesian inference. We show that the use of ℓ1 distance transforms

the invariance problem of infinite rotational turns, which is the main challenge to the iden-

tification and interpretation of multidimensional ideal points, into a milder problem of the

signed perpendicular problem. We showed that the total number of likelihood-preserving

rotations and reflections is reduced from∞ to eight in the case of the two-dimensional vot-

ing space as we change the distance measure from ℓ2 to ℓ1, where these remaining signed

perpendicular problem does not alter the relative configuration and substantive interpre-

tation of the ideal points.

Our simulation studies show that the proposed method successfully recovers various

types of multidimensional ideal points while existing ideal point estimation methods fail

to recover the planted structures of multidimensional ideal points. The proposed method

turned out to be highly effective in identifying complex congressional cleavages during the

late Gilded Age (1891-1899), an era of the battle of the standards. Our method finds

that the sectional division – Southern Democrats and the Populists from the West vs.

Northeastern representatives – arose as a major cleavage, along with partisan division,

during the 52nd and 53rd Congresses, which is consistent with existing historical narratives

on this period (Bensel, 2000; Frieden, 2016).

A principled statistical method to identify multidimensional politics is important both

for methodological and substantive reasons. First, methodologically speaking, attempts

to uncover multidimensional ideal points using a priori constraints hinder scientific com-

munication. Estimates of multidimensional ideal points will be conditional upon a priori

constraint, the uncertainty of which is not accounted for in the estimation. Thus, it is cru-

26



L1 Norm Ideal Point Estimation

Anti−gold

−2

0

2

−2 0 2
Dimension 1: Partisan

D
im

en
si

on
 2

: G
ol

d 
S

ta
nd

ar
d

(a) The 52nd US H.R. (1891−1893)

Anti−gold

−2

0

2

−2 0 2
Dimension 1: Partisan

D
im

en
si

on
 2

: G
ol

d 
S

ta
nd

ar
d

(b) The 53rd US H.R. (1893−1895)

Anti−gold

NY

NY

NY
NY

NY

−2

0

2

−2 0 2
Dimension 1: Partisan/Gold Standard

D
im

en
si

on
 2

: B
us

in
es

s/
C

ap
ita

l M
ar

ke
ts

(c) The 54th US H.R. (1895−1897)
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(d) The 55th US H.R. (1897−1899)

State Northeast South West
Group

Southern Democrat

Democrat

Ind. Democrat
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Ind. Republican
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Figure 8: Multidimensional Ideal Point Estimation of US House of Representatives using the
Proposed Method. (a) The 52nd US H.R. (1891-1893). (b) The 53rd US H.R. (1893-1895). (c)
The 54th US H.R. (1895-1897). (d) The 55th US H.R. (1897-1899). The color indicates the party
label of the representative: blue points indicate Democrats, red points Republican, green points
Populists, and gray points Silver party. The shape indicates the state which each representative
represents: circles indicate Northeastern states, triangles Southern states, and rectangles Western
states. For ease of visualization, we used orange triangles to denote Southern Democrats.

cial to have a valid statistical method that minimizes the impact of researchers’ subjective
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judgment on estimates. A false description of politics is made possible by the absence of

a systematic approach to multidimensional ideal points, which is the second and equally

important issue. Due to the rotational invariance problem and researcher-specified con-

straints, conventional ideal point estimation methods may overstate the significance of the

first dimension, which is typically the partisan divide, identify political cleavages incor-

rectly, or underestimate the likelihood of a political compromise. Our method shed light

on an alternative solution for the rotational invariance problem, thus providing a principled

way of estimating multidimensional ideal points.

Supplementary Materials

The supplementary materials include (1) a pdf file containing the appendix referenced in

the paper and (2) replication codes, along with detailed instructions for reproducing the

results.
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Moser, S., Rodŕıguez, A., and Lofland, C. L. (2021). Multiple ideal points: Revealed

preferences in different domains. Political Analysis, 29(2):139–166.

Neal, R. M. (2003). Slice sampling. The Annals of Statistics, 31(3):705–767.

Peress, M. (2013). Estimating proposal and status quo locations using voting and cospon-

sorship data. The Journal of Politics, 75(3):613–631.

Peress, M. (2020). Large-scale ideal point estimation. Political Analysis, 30(3):346–363.

Peress, M. and Spirling, A. (2010). Scaling the critics: Uncovering the latent dimensions

of movie criticism with an item response approach. Journal of the American Statistical

Association, 105(489):71–83.

Poole, K., Lewis, J., Lo, J., and Carroll, R. (2011). Scaling roll call votes with wnominate

in R. Journal of Statistical Software, 42(14):1–21.

Poole, K. T. and Rosenthal, H. (1997). Congress: A Political-Economic History of Roll-Call

Voting. Oxford University Press, Oxford.

Shor, B. and McCarty, N. (2011). The ideological mapping of american legislatures.

105(3):530–551.

Slapin, J. B. and Proksch, S.-O. (2008). A scaling model for estimating time-series party

positions from texts. American Journal of Political Science, 52(3):705–722.

Sohn, Y. (2017). Measuring Ideology, Dimensionality and Polarization in Politics. Ph.D.

Disseration, Department of Political Science, University of California, San Diego.

Tausanovitch, C. and Warshaw, C. (2013). Measuring constituent policy preferences in

congress, state legislatures, and cities. The Journal of Politics, 75(2):330–342.

Vafa, K., Naidu, S., and Blei, D. M. (2020). Text-based ideal points. Proceedings of the

2020 Conference of the Association for Computational Linguistics, ACL 2020.

Voeten, E. (2000). Clashes in the assembly. International Organization, 54(2):185–215.

31


	Introduction
	Motivating Examples
	Ideal Points Estimation in the 1-norm Space
	Setup
	1 Distance and Rotation Invariance
	Model
	Model Identifiability and Posterior Contraction Property
	Estimation

	Simulation Study
	Applications
	Discussion

